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1 Introduction

Reactive nitrogen (N) is an indispensable macronutrient nutrient, which is part
of important biomolecules that constitute both structural and non-structural
parts of the cells. Soil contains a mixture of N forms, in which the most
abundant inorganic N forms are nitrate and ammonium, whereas amino acids
and peptides are the organic N forms. In Asia, the most widely used N fertilizer
is urea, which can be utilized either directly by plants or in the split N forms
(ammonium or nitrate) produced by bacterial nitrification in the soil. Reactive
N regulates many physiological, biochemical, and molecular processes;
therefore crop yield depends on N fertilizer input and the biological N use
efficiency (NUE) of plants. These two parameters significantly contribute to the
effective utilization of reactive N (Ladha et al., 1998; Raghuram and Sharma,
2019; Lee, 2021; Madan et al.,, 2022). Low crop NUE results in inefficient
utilization of N fertilizers, and the unused N fertilizers cause air and water
environmental pollution and climate change, apart from economic wastage
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2 Molecular interventions for improving crop nitrogen use efficiency

(Sutton et al., 2013, 2021; Raghuram et al., 2021). The recognition that reactive
N pollution adversely affects biodiversity, human health and climate change
(Sutton et al., 2013, 2019) led governments to adopt resolutions on sustainable
N management (UNEA4.14, 2019; Raghuram et al., 2021; Sutton et al., 2021).
Recently, articles by Ladha et al. (2020) and Winiwarter et al. (2022) have
comprehensively discussed on reactive N and UN sustainable development
goals (SDGs). We need to improve crop NUE by manipulating the biological
system and/or reduce the consumption of N fertilizers as a part of our wider
plans for sustainable N management, in order to achieve all the relevant SDGs
(Ladha et al., 2020).

Rice is considered a model crop plantand has many advantages over wheat
and maize as the rice genome is smaller and was sequenced much earlier,
offering many genetic and genomic resources as compared to other crops.
Further, the improved rice transformation efficiency as compared to wheat
and maize expedites the molecular studies in rice. Rice has diverse genetic
resources, including locally adapted cultivars, wild relatives and landraces
among the cereals. According to the Global Crop Diversity Trust (https://www
.croptrust.org/), established in 2004 by the Food and Agriculture Organization,
over 500000 accessions of cultivated rice and wild relatives are known in the
world, and the International Rice Research Institute holds over 130000 rice
accessions (Jamora and Ramaiah, 2022). Further, rice is the only crop in which
genomic diversity is well characterized on over 3000 genomes (Li et al., 2014).

An increase in the application rate of N fertilizers improves crop yield up
to a certain extent, but after that, the addition of extra N fertilizers does not
increase the crop yield. Over half of the global N fertilizers are consumed by
just three crops - rice, wheat and maize with 16% for rice alone (Ladha et al.,
2016), though in India it is as high as 37% (Abrol et al., 2017). Yield-centric
crop improvement programmes under high input conditions and the lack of
low input programmes meant that NUE declined disproportionately even as
yields increased slightly (Sutton et al., 2013; Abrol et al., 2017; Raghuram et al.,
2022a; Kabange et al.,, 2022). Many rice varieties such as green revolution
variety and super hybrid rice have been developed, but they are responsive to
high N fertilizer input (Wang et al., 2021a; Wang and Peng, 2017). Therefore,
it is very important to reduce N fertilizer usage while maintaining a similar or
high yield, which can be achieved by improving the NUE of rice. Nitrogen
processes such as N acquisition from the soil, translocation, assimilation and
remobilization are affected by environmental conditions, which make NUE a
highly complex trait (Ladha et al., 1998). To dissect the molecular aspects of
NUE, many N-responsive or NUE genes associated with above-mentioned
processes have been identified in rice (Sharma et al., 2022, 2023; Madan et al.,
2022; Kumari et al., 2021; Sharma et al., 2020; Mandal et al., 2022; Pathak et al.,
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2020; Sinha et al., 2020; Kumari and Raghuram, 2020; Raghuram and Sharma,
2019; Mandal et al., 2018).

Identification of NUE donor genotypes and associated information are
necessary to expedite the rice breeding programmes. For this purpose, we
must develop the molecular markers associated with NUE candidate genes for
introgression into different rice varieties. In this context, we must also identify
the allelic diversity responsible for NUE within rice subspecies germplasms.
Quantitative trail loci (QTL) mapping and genome-wide association study
(GWAS) have helpedtoidentify the gene(s) and genomic regionsresponsible for
NUE. In this chapter, we have covered these aspects for a better understanding
of NUE in rice, with the ultimate goal of achieving rice genotypes with high
yield at low N input to save both economic and environmental costs.

2 Definition and selection of nitrogen use efficiency
indices

Ratio of input and output has been defined in different ways to calculate the
agronomical performance of a crop under different N conditions (Ladha et al.,
2005). NUE is the most important biological indicator to reduce N fertilizer
input with similar or higher yield. NUE is a complex trait as various phenotypic,
physiological, biochemical and molecular changes occur in plants to regulate
reactive N homeostasis in plants. It is well known that even cultivars of the
same species have significant difference in NUE, which reflects the complex
nature of NUE (Ladha et al., 1998). Due to such complexity, various definitions
have been proposed to define the NUE and the findings were summarized in
different publications (Ladha et al., 2005; Pathak et al., 2008; Raghuram and
Sharma, 2019; Briat et al., 2020; Lemaire and Ciampitti, 2020; Congreves
et al., 2021; Ciampitti et al., 2022; Ciampitti and Lemaire, 2022; Madan et al.,
2022). Congreves et al. (2021) have provided a comprehensive list of known
NUE indices including their strength and weakness based on fertilizer, plants,
soil and isotopes. To rank the N-efficient rice genotypes, a field study was
conducted using medium- and long-duration rice and various agronomically
important parameters such as physiological NUE, agronomic NUE and N
productivity index (NPI) among others were measured. Analyses revealed that
NPl was one of the most important parameters that can be used to rank the
N-efficient rice genotypes (Singh et al., 1998). Recently, redefinition of NUE has
been proposed (Ciampitti et al., 2022) in the context of N uptake efficiency and
N conversion efficiency. Application of N fertilizer (Nf) maximizes the grain yield
(Ymax), which is related to environmental N losses. To achieve Ymax, we must
regulate Nf and contribution by soil N (Ns) in such a way that minimum N losses
occur to the environment. They also proposed that previously known Nitrogen
Nutrition Index (NNI), which is used to measure the plant and crop N status
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4 Molecular interventions for improving crop nitrogen use efficiency

Table 1 List of common NUE indices used in rice

Important NUE

Abbreviation

related indices  (unit) Formula Outcome
Nitrogen use NUE Maximizing grain
efficiency (kgyieldkg™ = M yield driven by N
N) A(Nf+N5) fertilizer and soil N,
while minimizing
environmental N
losses
Nitrogen NNI This reflects plant
nutrition index = PNC N status as the Nc
Nc changes throughout
plant's growth.
NNI < 1 (deficient
plant N status), NNI
=1 (optimal plant
N status), NNI > 1
(excess N status)
Nitrogen use NUE,_ _ Yield Nf Yield per unit of
efficiency (crop) (kg yield kg™ " Fertlizer N applied N fertilizer.
N)
Partial-factor PFP _ VYieldf The fraction of N
productivity (grain yield/ " Fertlizer N fertilizer utilized and
total N) allocated to yield N.
Agronomic AE _ Yieldf -Yield0 The contribution of N
efficiency (kg grain kg™ " FertlizerN fertilizer in yield.
N)
Fertilizer-N REfertN _ PlantNf 7PlantNOX The percent of N
recovery (kg Nin grain Fertlizer N fertilizer used by
efficiency kg™ N applied) plants.
Physiological PE _ Yieldf - YieldO N fertilizer
efficiency (kg grainyield ~ PlantNf — Plant NO contribution from the
increase kg™' N plant tissues towards
taken up) the yield.
N uptake NUpE The percent of soil N
efficiency (kg N kg™ N) = FertilizerN + soilN © utilized by the plant.
N utilization NUtE _ Yield N fertilizer
efficiency (kg grainkg™ ~ PlantN contribution from the
N) plant tissues towards

the yield irrespective
of background N.
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Molecular interventions for improving crop nitrogen use efficiency 5

Table 1 (Continued)

Important NUE  Abbreviation

related indices  (unit) Formula Outcome
Nitrogen use NUE,, NUpE x NUtE Basic NUE definition,
efficiency (yield) (kg grain kg™ which predicts the
N) contribution of
applied N to the
yield N.
N harvestindex NHI _ YieldN <100 The fraction of plant
(%) " PlantN tissue N present in
yield (Percentage
form).
Recovery SNRE _ TNdffinPlantor Soil 100 The percent recovery
eﬁigiAency of N (%) = Fertilizer Napplied or L,AltAilization of N
fertilizer fertilizer.

Adapted from: Ladha et al., 2005; Pathak et al., 2011; Raghuram and Sharma, 2019; Congreves et al.,
2021; Madan et al., 2022; Ciampitti et al., 2022.

f, applied fertilizer; 0, not applied fertilizer condition; Plant Nf, amount of N in a fertilized plant; Plantf,
indicate the weight of a fertilized plant; TNdff, total N derived from fertilizer. Nf, application of N
fertilizers; Ns, N contribution by soil; AY, yield difference (Ymax — Y0); Ymax, maximizing grain yield;
Y0, grain yield contributed by Ns; Wmax, maximizing biomass; PNC, plant nitrogen concentration; Nc,
minimum PNC that can produce maximum aboveground biomass.

(Lemaire et al., 2008). The NNI index is the ratio between plant N concentration
and critical N concentration, which reflects the minimum N uptake required
for maximum aboveground biomass. The NNI has been used for estimation
of N requirement, N partition, photosynthesis capacity and NUE (Hu et al.,
2014; Zhao, 2014; Briat et al., 2020). Commonly NUE indices used for rice
experiments are provided in Table 1, and specific NUE indices may be chosen
based on the purpose of the experiments. An important consideration in this
regard is the most abundant N form(s) available to the plant and the role of
soil/root microbiomes associated with different rice subspecies and genotypes
(Zhang et al., 2019; Ladha and Reddy, 2019).

3 Nitrogen management practices for improved
nitrogen use efficiency

Agronomical practices play an important role in NUE improvement as they
reduce N loss occur through volatilization, leaching and denitrification (Udvardi
etal., 2021; Ladha et al., 2020). With advancements in technology, N fertilizers
have been modified and customized forenhanced NUE. Experiments performed
with graded levels of customized fertilizer have been shown to improve NUE
in rice (Nagabovanalli Basavarajappa et al., 2021). To achieve maximum yield,
farmers apply excess N fertilizers in fewer doses whereas plants need nutrition in
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6 Molecular interventions for improving crop nitrogen use efficiency

small amounts in many doses. As a result, most of the applied fertilizers are not
utilized by the plants bringing down the NUE. To overcome this problem from
the fertilizer angle, slow-release fertilizers have been developed incorporating
urease and/or nitrification inhibitors with some success for some crops in some
countries where farmers could afford their high costs (Li et al., 2018). Recently,
nanotechnology has been applied to further improve slow-release fertilizer
formulations and its potential for NUE remains to be firmly established (Sahu
etal.,, 2022). Biochar, a partial pyrolysis product of agricultural organic material,
has been shown to improve crop efficiency by enhancing moisture retention,
nutrient holding capacity of soil, nutrient availability and uptake. It has been
shown that the application of biochar improved NUE up to 12% in rice (Liu
et al., 2022d). Further, biochar-based N fertilizers such as biochar-coated urea
improved NUE by reducing N loss from soil and increasing N uptake in oilseed
rape (Jia et al., 2021). The NUE-enhancing properties of biochar-coated urea
are yet to be established in rice. Bio-fertilizers, the beneficial microorganisms,
are involved in the mineralization process to increase the availability of nutrients
and enhance nutrient acquisition in plants. Diazotrophs convert reduced N, to
ammonia, which is utilized by plants. Biological nitrogen fixation (BNF) helps
in NUE improvement in cereals including rice (Ladha et al., 2022). Precision
farming such as geographic information systems, remote sensing and variable
rate applicators are the technological advancements for NUE improvements.
Further, leaf colour chart, chlorophyll meter and drip fertigation help to provide
N fertilizer in the right amount at the right time, which reduce N loss and also
improve NUE in rice. A more detailed discussion of N management practices is
beyond the scope of this chapter, due to its focus on molecular aspects in rice.

4 Biological intervention for nitrogen use efficiency
improvement

The various N management practices operate within the inherent genetic
capacity of the plants to use available N inputs, which needs to be improved in
terms of uptake, utilization and remobilization efficiencies, minimally influenced
by agro-climatic conditions (Mandal et al., 2018; Raghuram and Sharma, 2019;
Sinha et al., 2020; Kumari and Raghuram, 2020; Moring et al., 2021 Madan
et al., 2022). The continuous variability of NUE in the germplasm of every
crop is a piece of firm evidence that it is a quantitative trait involving many
genes regulating the underlying physiological, biochemical and molecular
interactions. Genetic improvement efforts need germplasm diversity for
phenotypic characterization/selection and/or identification of donor genotypes
for breeding, quantitative trait loci, marker development or genome-wide
association mapping. The availability of huge germplasm diversity in rice and
advancements in its genomics, functional genomics and biotechnological
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tools provide immense opportunities to employ reverse genetics for NUE
enhancement in rice (Mandal et al., 2018; Raghuram and Sharma, 2019).

4.1 Nitrogen use efficiency phenotypes

Phenotype is a set of observable and ideally measurable characteristics
associated with an inherited trait such as plant NUE, whether morphological,
physiological or biochemical, but stable in nature and genetically regulated.
Plants of the same genotype interacting with the environment may manifest as
different phenotypes, but different genotypes that vary in the extent of the same
phenotypic traits are of particular interest in crop improvement for NUE. The
NUE is a complex trait, and therefore the identification and characterization of
the phenotype and the associated genomic regions/loci/genes is an important
but unfinished task in most crops including cereals (Hawkesford and Griffiths,
2019), despite the recent progress in rice (Sharma et al., 2018, 2021; Kumari
etal., 2021). The N influences plant growth traits throughout the developmental
processes in rice, from germination to seed setting (Sharma et al., 2018, 2021).
The root is the primary organ for N uptake, and it has been shown that either
N deprivation or excess N causes significant changes in the root architecture
of rice (Zhang et al., 2020a; Sharma et al., 2018). Fluctuation in N input causes
poorly developed plants with altered tiller number and reduced grain yield
(Wang et al., 2017). Further, it has been shown that yield components such as
panicle development and grain filling are also influenced by N. Using yield as
major differentiator between N response and NUE in rice, we found that out
of 20 significantly N-responsive traits, only 6 were significantly correlated with
NUE for nitrate or urea and 2 others were N-form specific (Sharma et al., 2021).
They include germination, root length, flowering time, shoot length before
and after harvest, total plant height, fresh biomass and dry biomass. Details of
phenotypic traits are provided in Table 2. Such detailed characterization of the
NUE phenotype will boost the identification of highly efficient NUE QTLs and/
or the most important candidate genes, which can be used to expedite the
NUE improvement programmes in rice.

4.2 Quantitative trail loci mapping, whole genome
re-sequencing and genome-wide association study for
nitrogen use efficiency candidates

Natural variations exist among the germplasms and their screening leads to the
identification of robust and reproducible phenotypes as well as the isolation
of alleles responsible for the natural phenotypes (Ogura and Busch, 2015).
Identification of stable NUE QTLs, which are less influenced by genotype x
environment interaction is the most important step for NUE improvement in

© Burleigh Dodds Science Publishing Limited, 2024. All rights reserved.



8 Molecular interventions for improving crop nitrogen use efficiency

Table 2 Segregation and shortlisting of phenotypic parameters for N response, yield and NUE

Yield-related N use efficiency
No. N-responsive parameters parameters - low N parameters
1 @b9Days to germination (G) @b9IDays to germination  @*<Days to germination

2 @9Chlorophyll content (V1)

3 @bAGreen leaf number at veg. stage(V2)

(G)

@b9Shoot length before
harvest (V7)

@Total leaf number at
flowering (V8)

(G)

@baShoot length before
harvest (V7)

@bcFresh biomass (V11)

4 ®tYellow leaf number at veg. stage (V3)  @b9Fresh biomass (V11) @P<Shoot length aft.
harvest (V12)
5 @baTotal leaf number at veg. stage (V4)  ©b9Shoot length after @9 Root length (V13)

harvest (V12)

6 @b eaf width(V5) @bRoot length(V13) @bTotal plant height

(V14)

7 @baStem thickness (V6) @baTotal plant height @b Dry biomass (V15)

(V14)

8 @baShoot length before harvest (V7) @bDry biomass (V15) @9 Days to flowering (R1)
9 @boTotal leaf number at flowering (V8)
10

11 @baYellow leaf number at flowering (V10)

@9Days to flowering (R1)

@baGreen leaf number at flowering (V9)

12 @b9Fresh biomass (V11)

13 @b9Shoot length after harvest (V12)
14 @®Root length (V13)

15 @®Total plant height (V14)

16 @b Dry biomass (V15)

17 @9Days to flowering (R1)

18 @9 Unfilled seed weight (R2)

19 @9 Total seed weight (R3)

20 ™ Filled seed weight (R4)

21 ) Panicle weight (R5)

22 ™Filled seed number (R6)

23 ™ Total seed number (R7)

24  @Unfilled seed number (R8)

25  @baWeight of panicle remains (R9)

This table was adapted from our earlier publication (Sharma et al., 2021). Twenty of the 25 parameters
were confirmed as N responsive based on the significance test and shown in the first column. Ten
of these parameters shortlisted from feature selection and network analyses were subjected to
correlation analysis with grain yield in normal and low N and those parameters that significantly
correlated with yield at low N are shown in the second column. The NUE was calculated as yield per
unit N input for all genotypes/treatments, and their correlation with each of these ten parameters
was analysed. Those that significantly correlated with NUE are shown in the third column. The
superscripted alphabet a/b/c over the parameter in the first column denotes parameter in combined
nitrate and urea N, only nitrate N and only urea N.

G, germination parameter; ns, non-significant parameter; R, reproductive parameter; V, vegetative
parameter.
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Molecular interventions for improving crop nitrogen use efficiency 9

rice. Many studies have been performed to identify the QTLs/genomic regions
and or genes involved in NUE in rice (Table 3). AlImost two decades ago, Yamaya
et al. (2002) focused on N recycling (sink and source relation) and observed
the overexpression of glutamate synthase (NADH-GOGAT from Japonica) in
Kasalath, an indica cultivar, increased the grain weight (up to 80%). Since Indica
cultivars contain lower NADH-GOGAT protein content in the sink organ as
compared to Japonica, overexpression of Japonica NADH-GOGAT confirmed
their role in sink regulation. Then, they used the protein content of GS1
(senescing leaf blade) and NADH-GOGAT (developing leaf blade), performed
QTLs mapping and identified QTLs associated with N recycling and various
agronomic traits. With the advancement of genome information and mapping
tools, many NUE QTLs and associated candidate genes have been identified in
rice (Table 3). Phenotypicvariation isthe primary requisite for QTLs identification.
Most common phenotypic traits in QTL analyses were chlorophyll content, plant
height, tiller number and traits associated with the reproductive phase such
as panicle number, seeds and yield. In the context of these traits and various
physiological parameters, the N content of plant/organ/tissue and N fertilizer
input were used to define the various efficiencies including NUE. Phenotypic
parameters used in earlier studies are not defined as phenotypes for NUE.
Recently, comprehensive phenotypic analyses established the phenotypes for
NUE in rice (Sharma et al., 2021). QTL identification using these defined NUE
phenotypes may produce stable QTLs, which are not influenced by genotype x
environment interaction. In many studies of QTL mapping, the identification of
candidate genes/loci is hampered by a lack of completely sequenced genome
information and a long timeline to accomplish the different steps involved in
the experiments. In this context, GWAS have produced many NUE candidates
within a short duration and less effort. The genes OsTCP19, OsNAC68 and
OsMYB61 among others are the important candidates identified by GWAS in
rice (Tables 3 and 4). Though GWAS produce candidate gene(s), their role in
NUE must be validated in field condition using transgenic or genome-editing
(CRISPR/Cas?) approaches.

4.3 Genetic manipulation of genes involved in nitrogen use
efficiency

Functional characterization of a particular biological response may be achieved
using forward and reverse genetics approaches. Studies using forward or
reverse genetics have provided a wealth of information on NUE in crop
plants (Zhang et al., 2020b; Neeraja et al., 2021; Liu et al., 2022a). Forward
genetics begins with identified phenotypes and then the isolation of loci/

© Burleigh Dodds Science Publishing Limited, 2024. All rights reserved.
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22 Molecular interventions for improving crop nitrogen use efficiency

gene(s) responsible for observed phenotypes. N-responsive phenotypes have
been used to identify the genes involved in NUE and recently discovered
NUE phenotypes in rice (Sharma et al., 2021) would expedite the research on
NUE. Traditional forward genetic approaches take longer time and, in many
cases, lack the information on molecular basis and associated mechanisms
responsible for observed phenotypes.

Reverse genetics begins with the known candidate gene and then
generation of transgenic (loss or gain of function) plants to define the effect
of manipulated gene(s) on the various traits/phenotypes. Advancements in
genome sequencing information have provided lots of information about genes
not only in the particular species but also in different species and germplasms.
Therefore, reverse genetic approach permits tremendous possibility to
develop and evaluate transgenic plants for NUE improvement under different
N conditions. In the last two decades, the research on transgenic manipulation
for NUE improvement has been focused on cereals including rice. We have
covered the recent information on gene manipulation for NUE (Table 4) and
also included information reported in earlier publications (Mandal et al., 2018;
Raghuram and Sharma, 2019; Sinha et al., 2020; Kumari and Raghuram, 2020;
Madan et al., 2022).

To identify the association of candidate genes with NUE, the most
common targets for gene manipulations are N transporters (OsNPF7.9,
OsNRT2.3b, OsAMT1;1, OsAMT1;2, OsAMT1;3), N assimilation enzymes
(OsNR2, OsGS1;2, OsGS2, GS1;3, AlaAT) and genes involved in transcriptional
regulations (OsTBP2.1, OsMYB305, OsNLP3, OsNLP4, OsNAC68, OsMYB305)
as mentioned in Table 4 and similar family members in earlier publications
(Mandal et al., 2018; Raghuram and Sharma, 2019; Sinha et al., 2020; Kumari
and Raghuram, 2020; Madan et al., 2022). Identified NUE genes are associated
with heading date (OsNhd1, Ghd7), autophagy pathway (OsATG8a, OsATG8b),
epigenetic regulation (NGR5), stress (OsLSD1.1), calcium signalling (OsNLP1, 3
and 4) and other nutrient (OsPHR3) among others (Table 4).

4.4 Biological processes regulated by nitrogen use efficiency
genes

The NUE genes mentioned in Table 3 were functionally categorized into various
biological processes based on their validated biological functions known in the
literature. The most prominent functional categories include N transport (37%),
N assimilation (18%), transcriptional regulators (11%), protein modification and
degradation (10%) and calcium-mediated signalling (7%) among others (Fig.
1). Details of biological processes are given later.
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Figure 1 Pie diagram represents the functional categories of NUE genes known in rice.
NUE genes were classified according to their function known in literature.

4.4.1 Nitrogen transport, nitrogen metabolism and nitrogen
use efficiency

N uptake efficiency and subsequent utilization efficiency regulate NUE in plants.
In rice, the majority of known NUE genes belong to the N transport (37%) and
assimilation (18%) categories (Fig. 1). In rice, nitrate and ammonium are the
two most common soil N forms, which are transported inside the cells using
nitrate transporters (NRTs) and ammonium transporters (AMTs), respectively.
Overexpression of NRTs such as OsNRT1;1A or AMTs such as OsAMT1;1 have
been shown to improve the NUE, whereas their downregulation decreased
NUE in rice (Table 4). This was not the case with OsAMT1.3, where its
overexpression reduced yield at high N (Bao et al., 2015), which could be due
to different transcriptional or translational regulation within the same gene
families. Further, the triple mutants of OsAMTs (1;1, and 1;2 and 1;3) showed
reduced NUE in rice (Konishiand Ma, 2021). Apart from nitrate and ammonium,
amino acids present in the soil are acquired by the root through amino acid
transporters (AATs). Amino acids are also generated through the reduction of
nitrate via the GS-GOGAT pathway. In the context of remobilization, amino acids
are considered the major source of N form and therefore play an important
role in NUE. Downregulation of AATs such as amino acid permease 3 (Lu
et al., 2018) and lysine-histidine-like transporter 1 (Guo et al., 2020) has been
shown to reduce NUE in rice (Table 4). Considering the importance of AATs
in N signalling, assimilation, metabolism and long-distance transport, limited
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information is available for AATs in rice compared to Arabidopsis. Further, the
coordinated role of NRTs, AMTs and AATs in NUE is yet to be established.

During N assimilation, nitrate reductase (NR) converts nitrate into nitrite,
which is then converted into ammonium by nitrite reductase (NiR) in plants.
Ammonium goes through a series of enzymatic reactions and is involved in
the generation of different amino acids The allelic variation of OsNR2 has
demonstrated its role in NUE (Gao et al., 2019), whereas direct evidence
supporting the role of NiR in rice NUE is yet to be established. Interestingly,
manipulation of the promoter of NiR for the OsNLP4 transcription factor has
improved yield at low N as compared to wild type in rice (Yu et al., 2021).
Cytosolic and plastidic isoforms of glutamine synthetase (GS) are known in
rice. Rice genome encodes three members of GS1 (GS1;1, GS1;2, and GS1;3)
and overexpression of OsGS1;2 (Wang et al., 2020b) and GS1;3 (Fujita et al.,
2022) improved NUE in rice (Table 4). The role of N-assimilation enzymes such
as glutamate synthase (FD-GOGAT or NADH-GOGAT) in the context of other
assimilatory enzymes and transporters is under progress (Li et al., 2022a) and
needs deeper investigation for NUE improvement in rice.

4.4.2 Protein modification, degradation and nitrogen use
efficiency

It has been established that post-translational modifications (PTMs) are
involved in the regulation of protein stability, distribution and their function
and therefore tightly control the biological responses in plants. PTMs play
an important role in soil N uptake, assimilation and remobilization (Wang
et al.,, 2021c). Phosphorylation is the most common PTM that occurs in plants.
Phosphorylation of nitrate transporter (Ho et al., 2009) and ammonium
transporter (Loque et al.,, 2007; Lanquar and Frommer, 2010) has been
characterized, which suggests the importance of post-translational regulation
to control the N uptake and translocation in plants. However, phosphorylation
of urea transporter (DUR3) and phosphorylation-dependent urea uptake are
not known in the plants.

The transporter NRT1.1 is known as a transceptor, i.e. it can act as a
nitrate transporter and nitrate receptor in Arabidopsis. NRT1.1 works as a dual
affinity transporter, i.e. it works as a low-affinity transporter under low nitrate
availability, whereas phosphorylation of Thr101 amino acid by CIPK23 kinase
converts NRT1.1 into a high-affinity nitrate transporter. Availability of high
nitrate promotes dephosphorylation of Thr101 and NRT1.1 function as low-
affinity nitrate transporter in Arabidopsis. Uptake of ammonium from soil is
performed by ammonium transporters (AMTs) in plants. Time- and ammonium
dose-dependent phosphorylation of T460 residue of Arabidopsis ammonium
transporter AMT1.1 was observed (Loque et al., 2007). CIPK23 has been shown
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to phosphorylate the T460 residue of AMT1.1 in Arabidopsis but the loss of
function of the cipk23 mutant provided evidence that additional kinases are
involved in the phosphorylation of T460 residue in Arabidopsis (Straub et al.,
2017). Addition of ammonium supply promoted T452 (similar to the T460 in
Arabidopsis AMT1.1) phosphorylation in OsAMT1.2 by OsACTPK1 kinase in
rice (Beier et al., 2018). More experimental pieces of evidence are needed
to decode the transceptor function as in the case with Arabidopsis nitrate
transporter NRT1.1. Based on the transceptor function of bacterial and fungal
AMTs (Lanquar and Frommer, 2010), it was hypothesized that Arabidopsis
AMTs may function as transceptor in plants. However, this hypothesis needs to
be validated in plants.

N remobilization includes the transport of mainly nitrate and amino acids
and therefore contributes an important step towards NUE improvement.
Nitrogen limitation adaptation gene encodes a RING E3 ligase, which interacts
and ubiquitinates with nitrate transporter AtNRT1.7 for its degradation via 26S
proteasome pathway in Arabidopsis (Liu et al., 2017a). During N deficiency,
ubiquitination controls the source-to-sink remobilization of leaf nitrate by
regulating the protein abundance of AtNRT1.7 in Arabidopsis (Liu et al., 2017).
Though the information is available on genes, proteins and enzymes involved
in the ubiquitin-proteasome pathway, their role in rice NUE is not established.

Autophagy, an important component in the N remobilization, is an
intracellular degradation process, which maintains cellular homeostasis under
nutrient starvation condition by providing nutrients through the removal of
damaged or aged proteins, or organelles in plants. It has been shown that
overexpression of OsATG8a (Yu et al., 2019); OsATG8c (Zhen et al., 2019)
increased NUE in rice (Table 4). These observations suggest that protein
modifications have the unique potential to improve NUE and therefore we must
explore these areas and identify candidate genes for improvement of NUE in
rice.

4.4.3 Transcriptional regulators and nitrogen use efficiency

Transcription factors (TFs) bind to the cis-regulatory elements to regulate the
expression of genes to control biological responses in plants. A transcriptional
regulatory network (TRN) is formed by TFs and their interactions with target
genes, and nitrate-regulated TRN has broadened molecular aspects of N
transport and metabolism in Arabidopsis (Gaudinier et al., 2018). Despite the
fact that such a comprehensive TRN is not known in crops, orthologs-based
predicted N-responsive TRN revealed many TFs and their targets involved in
N transport and metabolism in rice (Pathak et al., 2020; Sharma et al., 2022).
Many TFs from various gene families have been characterized for their role in N
response, but their role in NUE is limited in rice. For example, nitrate-regulated
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1 (ANR1), a MADS-box TF, has been shown to regulate nitrate-dependent
lateral root development in Arabidopsis (Zhang and Forde, 1998), whereas
OsMADS25 regulates the nitrate-dependent architecture of the rice root system
(Zhang et al., 2018). These TF family members have yet to be characterized for
their role in the improvement of NUE in rice. Among TFs, NHD1, ARE1 and
NAC68 are well-known TFs that regulate NUE in rice (Table 4).

4.4.4 Calcium signalling and nitrogen use efficiency

Nitrate-regulated primary responses include activation of many genes involved
in myriads of pathways including calcium (Ca?*) signalling in plant (Liu et al.,
2020). Ca?*-mediated signalling is one of the most evolutionarily conserved
signalling, involved in the regulation of various physiological, stress, and
transport processes in plants. Nitrate has been shown to induce Ca?* ions level
in cytosol and nucleus; however, such induction was not observed in nitrate
transporter NRT1.1 mutants, suggesting nitrate-specific Ca?* induction in
Arabidopsis (Riveras et al., 2015). Calcium signalling involves Ca?* ions sensor
proteins such as calcineurin-B-like proteins (CBL) and calcium-dependent
protein kinases (CPKs), which interact with and activate CBL-interacting protein
kinases (CIPK) for the phosphorylation of target proteins for downstream
signalling (Liu et al., 2021a).

Under low N conditions, CBL proteins (CBL1 and CBL9) interact with
CIPK23 and form associated complexes (CBL1-CIPK23 and CBL9-CIPK23),
which convert low-affinity nitrate transporter NPF6.3/NRT1.1 into high affinity
after phosphorylation (Ho et al., 2009). The ABI2 protein, a specific protein
phosphatase 2C, dephosphorylate NPF6.3/NRT1.1 transporter to antagonize
CBL1/CBL9-CIPK23 complex phosphorylation responses in Arabidopsis (Leran
et al., 2015). Other Ca?* sensor proteins CPKs (CPK10, CPK30 and CPK32) are
known to phosphorylate TF NIN-like protein-7 in the nucleus, which regulate a
large set of genes to implement nitrate response in rice (Liu et al., 2017b). There
are many Ca?* signalling genes have been characterized for their N responses
in Arabidopsis and rice, but only NLPs and CIPK2 have been shown to regulate
NUE in rice (Table 4). The role of other core components of Ca?* signalling in
the regulation of rice NUE is yet to be established.

4.4.5 G-protein signalling and nitrogen use efficiency

Heterotrimeric G-proteins, which consist of three different subunits (o, B, and y),
have been implicated in the regulation of plant growth, development, stress and
nutrient responses in rice (Cui et al., 2020; Pandey, 2019). Our earlier molecular
studies, including genome-wide N responses, have demonstrated the role of
G-proteins in the regulation of N responses in Arabidopsis (Chakraborty et al.,
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2015a, 2019), maize (Raghuram et al., 1999) and rice (Ali et al., 2007; Pathak
et al., 2021; Prasanna et al., 2023). To identify the genetic loci responsible for
NUE, QTL mapping experiments were performed using rice genotypes with
significant variation in the N-responsive traits, which led to the identification of
a major QTL(gNGR9) for NUE in rice (Sun et al., 2014). Fine mapping of gNGR9
and genetic complementation experiments revealed a previously identified
gene known as Dense and Erect Panicles 1 (DEP1). DEP1 is a G-protein gamma
subunit, and the gain of function of dep 1 allele improved NUE in rice (Sun et al.,
2014). Members of the gene family 'squamosa promoter binding protein-like’
(OsSPL) have been shown to regulate growth and development in rice. For
example, OsSPL14 regulates ideal plant architecture and it was differentially
regulated under low N conditions (Srikanth et al., 2016). The OsSPL18 knockout
mutant showed reduced panicle length and grain number while the number of
tillers increased (Yuan etal., 2019). Further, OsSPL18 also binds to the promoter
of DEP1, which controls NUE in rice. This clearly suggests their potential
involvement in the regulation of NUE in rice.

In another study, EMS (ethyl methanesulfonate) mutants of indica rice were
analysed, and the leaf width 5 (Iw5) mutants were identified, which had broad
width leaves and small grains (Zhu et al., 2020). Map-based cloning revealed
the base substitution mutation in the Ga subunit (RGA1) leading to truncated
RGA1 proteins in the mutants. This mutant showed improved photosynthetic
and N utilization efficiency as compared to the wild-type plants (Zhu et al., 2020).
Advancements in G-protein signalling research have expanded the signalling
components in plants. The Arabidopsis G-protein interactome (Klopffleisch
etal., 2011) and orthologs-based predicted rice G-protein interactome (Pathak
et al., 2021) revealed many known and potential candidates associated with
N responses/NUE in rice. As compared to the available information and
identification of NUE QTL, this area is underexplored and needs much deeper
investigation for the improvement of NUE.

4.4.6 Epigenetic regulation, stress and nitrogen use efficiency

Pie diagram shows that N transport and N assimilation are relatively more
explored areas for NUE improvement, whereas biological processes such as
‘Epigenetic regulation’ and ‘Stress’ need much deeper investigation in the
context of NUE (Fig. 1). Apart from transcriptional and post-transcriptional
regulation, that epigenetic regulation also affects the expression of genes
through different processes of DNA methylation and histone modifications in
plants (Liang et al., 2020). It is known that N affects the DNA methylation status
as well as histone modification dynamics in plants (Kou et al., 2011; Secco et al.,
2017).The NRgene was methylated by chromomethylase 3, which was regulated
by ammonium in Arabidopsis (Kim et al., 2015). It has been shown that histone
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H3 lysine 27 trimethylation (H3K27me3) regulates N-mediated tillering in rice
(Wu et al., 2020). To promote N-mediated tillering, branching-inhibitory genes
are inhibited after H3K27me3 modification by polycomb repressive complex
2, which was recruited by N-mediated tiller growth response 5 (NGR5) TF in
rice (Wu et al., 2020). Despite available epigenetic regulation information, only
NGR5 has been shown to regulate NUE in rice (Table 4). This clearly showed
that the identification and manipulation of genes associated with epigenetic
regulation may improve NUE in rice.

Crosstalk of N and stress signalling has been a relatively underexplored
research area for crop improvement (Jangam and Raghuram, 2015). N and
stress responses showed commonality in terms of physiological, biochemical
and molecular changes in plants. For example, the roots are the primary organ
to sense soil N fluctuation and drought condition. Photosynthesis, chlorophyll
contents, etc. are affected under both conditions. Further, mapping of nitrate-
or urea-responsive differentially expressed genes onto various biological
pathways and processes revealed their involvement in abiotic and biotic
stresses in rice (Pathak et al., 2020; Sharma et al., 2022; Mandal et al., 2022;
Sharma et al., 2023). Few stress-associated genes have been characterized for
their role in NUE (Table 4). For example, a recent study showed that the drought
and salt tolerance (DST) TF regulates NUE by controlling the N assimilation
gene OsNR1.2 in rice (Han et al., 2022). The loss of function of dst mutant
showed reduced OsNR1.2 function and accordingly a significant reduction
in NUE (Han et al., 2022). In another study, the screening of 118 potential
TFs identified from different transcriptomic and metabolomics studies led
to the identification of Dehydration-Responsive Element-Binding Protein 1C
(OsDREB1C), which improved photosynthesis and NUE in rice (Wei et al., 2022).
OsDREB1C is an AP2/ERF family TF, and its overexpression increased yield by
up to 68%, including NUE in rice (Wei et al., 2022). These findings clearly show
that unravelling the mechanisms controlling both N and stress responses and
manipulating the identified candidate genes would provide tolerance to the
plants and reduce the consumption of N fertilizers, contributing to sustainable
agriculture.

4.5 Genetic and genomic strategies for manipulation of
nitrogen use efficiency genes

Overexpression or mutation (knockdown or knockout) of these genes either
increased or decreased the NUE in rice (Table 4). Interestingly, in few cases,
two genes were manipulated to improve the NUE in rice (Table 4). For example,
Chen et al. (2020a) demonstrated that transgenic plants co-expressing nitrate
transporter (OsNRT2.3a) along with its interactor (OsNAR2.1) had increased
NUE as compared to those single-gene transgenic rice plants overexpressing
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either OsNRT2.3a or OsNAR2.1 in rice. In this case, both genes are involved in
the same transport pathway. In another example, two genes involved in two
different pathways viz. ammonium transport (OsAMT1;2) and N-assimilation
pathways (OsGOGAT1)were co-activated in rice using T-DNA activation tagging
method (Lee et al., 2020a). Rice plants with double activation of ammonium
transporter (OsAMT1;2) and NADH-glutamate synthase 1 (OsGOGAT1)
showed improved grain yield under N-limiting condition. This clearly suggests
that to deal with complex nature of NUE, we must simultaneously manipulate
multiple targeted genes involved in same or different pathways for improved
NUE in rice.

Allelic variations within subspecies and related germplasms have provided
the natural resources to identify the target loci/genes responsible for the
phenotypic variation including NUE (Table 2). A study conducted by Gao et al.
(2019) showed that allelic variation in nitrate reductase 2 (OsNR2), a gene
involved in N-assimilation pathway, is responsible for high NUE in Indica rice
as compared to Japonica subspecies. They showed that Trp, . substitution
in OsNR2 enzyme reduced its activity in Japonica as compared to Indica
subspecies. In another study, a natural allelic variation was identified in nitrate
transporter, which improved NUE by regulating auxin biosynthesis in rice
(Zhang et al., 2021). An interesting work was performed by Chen et al. (2020a),
where they first improved the NUE by overexpressing nitrate transporter
(OsNRT2.3b) in rice. Next, they mutagenized the transgenic rice with EMS and
isolated a transgenic plant having short duration with similar NUE. This study
shows the integration of two methods, i.e. transgenic manipulation of a gene
and screening of genetic variation (EMS mutagenesis) to develop a plant with
multiple beneficial traits.

Improvement of NUE using chimeric protein is a unique methodology
demonstrated by Chen et al. (2020b). They developed a chimeric nitrate
transporter by replacing the transmembrane domain (TMD) region between
second and fifth with CHL1 transporter. They observed increased NUE in
Arabidopsis and grain yield in rice. This study provides an opportunity to
develop synthetic chimeric protein (genotype-specific/inhibitory/activating
domain)for NUE improvement. Consideration of synthetic promoter associated
with stress and or nutrient responses would add another level of control to fine-
tune the spatio-temporal regulation of chimeric protein for NUE improvement
in rice.

4.6 Molecular markers for nitrogen use efficiency genes in rice

Molecular markers help in marker-assisted selection, which has been shown to
improve the efficiency of rice cultivars. Research on NUE revealed many genes
involvedinNUEinrice.Recently, Lietal.(2022c)have developedthe 18intragenic
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molecular markers to track the coinheritance of 14 NUE genes studied in rice
(Table 5). These are NRT1.1B, OsDEP1, OsNR2 and OsDNR1 among others,
which are well established for their role in NUE in rice (Table 5). To develop the
markers, 2 kb upstream region from start codon and 1 kb downstream region
from stop codon were considered. While developing these intragenic markers,
they observed structural variations in the 5" UTR, which help to define genetic
diversity across different germplasms. Identification of molecular markers
associated with NUE is a necessary step for the wider application of discovered
genes and to expedite the breeding programmes for NUE improvement.

5 Conclusion and future prospects

Improvement of NUE is one of the most important steps for sustainable
agriculture, as well as for global sustainable N management. As a crop that
feeds half the world and is one of the highest consumers of N fertilizers, rice
is an important target crop for NUE. For improved NUE, either higher yields
must be achieved using current N fertilizer inputs, or, even better, similar yields
must be achieved using lower N inputs. Many studies have been performed to
identify the molecular targets and associated signalling networks involved in
rice NUE. Transgenic manipulation of selected molecular targets has improved
yield and NUE in rice (Tables 3 and 4). Biological pathways primarily associated
with manipulated NUE genes were N uptake, assimilation, translocation
and remobilization. In the context of signalling events, N affects calcium-
mediated signalling, hormone-dependent regulation, autophagy pathways
and epigenetic regulation in rice (Table 4). Recent studies using other gene
family members, such as calcium signalling associated NLP gene family, were
characterized for NUE in rice. Further, NUE regulation through OsNGR5 opens
an underexplored area of N and epigenetic regulation in plants.

During early studies, single-gene-based transgenic plants were used to
understand the N response and NUE, but it appeared that this method does not
provide complete information to improve NUE because of its complex nature.
As per improved knowledge, manipulation of two or more genes involved in
the same pathways has yielded better results in terms of NUE. For example,
co-activation of nitrate transporter and its interactors provided increased
NUE as compared to their single-gene transgenics (Chen et al., 2020). Since
genotype and environment interaction affects NUE, we must also consider
temporal and spatial gene regulatory networks controlling NUE in rice. Another
underexplored area is gene splicing events and NUE. Alternative splicing of
a gene produces different transcript variants, and it is possible that one or all
splice variants may contribute to a particular trait or response. Liu et al. (2022c)
have recently shown that glutamine synthase (OsGS7, 1) has two splice variants
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viz. OsGS1;1a and OsGS1;1b and the high OsGS1; 1b activity is associated with
improved NUE in rice. This will help to shortlist/identify the specific transcript
variants that actually contribute to NUE.

The development of ‘omics’ approaches enabled us to identify the temporal
and spatial gene regulatory networks controlled by N in rice. However, such
studies are limited in terms of comprehensive tissues-, time- and N dose-specific
transcriptional regulation in diverse cultivars and not available for translational
or post-translational regulations and metabolic regulation with multiple rice
cultivars (genotypes). For reproducible and reliable conclusions of the ‘omics'’
data, we must generate N-dose dependent, comprehensive temporal and
spatial data sets in many rice genotypes contrasting for NUE in field condition.
This will help to understand the genotype and environment interaction, and
accordingly manipulation of candidate genes for their temporal and/or tissue-
specific roles for NUE.

The development of rice cultivars with a synthetic control system for
gene expression would be one of the most challenging tasks in the near
future. We can modulate the function of specific gene(s) according to the soil
N condition, environment and developmental stages of plants by spraying/
supplying exogenous activator. This will also help to engineer the plant for dual
or multiple regulatory system, i.e. regulation at transport for efficient N uptake
from soil and regulation at the reproductive stage for improved yield at low N.

The number of QTLs and associated genes for NUE are increasing with
time, but very few of them are used in the breeding programmes as the
molecular markers for many QTLs and NUE genes validated in field condition
are not available. In this context, Li et al. (2022c) have developed the molecular
markers for validated 14 NUE genes in rice cultivars. In addition, CRISPR/Cas9
is the most important genome editing tool for precision breeding in plants.
This method has the ability to generate transgene-free rice plants. After the
identification of elite rice varieties with improved NUE and the responsible
gene(s), CRISPR/Cas? genome editing tool can be used to manipulate the
genome to generate many novel germplasms, which contain homologous NUE
gene(s) identified in elite rice varieties. This will help to expedite the breeding
programmes for NUE improvement in rice.

6 Where to look for further information

Sutton et al. (2019), Raghuram et al. (2021), Sutton et al. (2021) and Raghuram
et al. (2022a) provide detailed information on the scientific community,
international collaborations, and the importance of global governance to
regulate N policy and global climate change.

© Burleigh Dodds Science Publishing Limited, 2024. All rights reserved.



Molecular interventions for improving crop nitrogen use efficiency 33

Liu et al. (2022a) and Hawkesford and Griffiths (2019) provide
comprehensive information on the molecular and genetic aspects of N-related
processes and NUE in crop plants.

Current progress related to N can be found on the following websites:

¢ International Nitrogen Management System (https://www.inms.inter-
national/).

¢ International Nitrogen Initiative (https://initrogen.org/).

¢ Global Partnership on Nutrient Management (http://www.nutrient-chall-
enge.org/).
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